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Preface

This reader is an outgrowth of my course entitled “Introduction to Digital
Signal Processing and the Discrete Fourier Transform (DFT)1 which I
have given at the Center for Computer Research in Music and Acoustics
(CCRMA) every year for the past 16 years. The course was created
primarily as a first course in digital signal processing for entering Music
Ph.D. students. As a result, the only prerequisite is a good high-school
math background. Calculus exposure is desirable, but not required.

Outline

Below is an overview of the chapters.

• Introduction to the DFT
This chapter introduces the Discrete Fourier Transform (DFT) and
points out the elements which will be discussed in this reader.

• Introduction to Complex Numbers
This chapter provides an introduction to complex numbers, factor-
ing polynomials, the quadratic formula, the complex plane, Euler’s
formula, and an overview of numerical facilities for complex num-
bers in Matlab and Mathematica.

• Proof of Euler’s Identity
This chapter outlines the proof of Euler’s Identity, which is an im-
portant tool for working with complex numbers. It is one of the
critical elements of the DFT definition that we need to understand.

• Logarithms, Decibels, and Number Systems
This chapter discusses logarithms (real and complex), decibels, and

1http://www-ccrma.stanford.edu/CCRMA/Courses/320/

ix
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number systems such as binary integer fixed-point, fractional fixed-
point, one’s complement, two’s complement, logarithmic fixed-point,
µ-law, and floating-point number formats.

• Sinusoids and Exponentials
This chapter provides an introduction to sinusoids, exponentials,
complex sinusoids, t60, in-phase and quadrature sinusoidal compo-
nents, the analytic signal, positive and negative frequencies, con-
structive and destructive interference, invariance of sinusoidal fre-
quency in linear time-invariant systems, circular motion as the vec-
tor sum of in-phase and quadrature sinusoidal motions, sampled
sinusoids, generating sampled sinusoids from powers of z, and plot
examples using Mathematica.

• The Discrete Fourier Transform (DFT) Derived
This chapter derives the Discrete Fourier Transform (DFT) as a
projection of a length N signal x(·) onto the set of N sampled
complex sinusoids generated by the N roots of unity.

• Fourier Theorems for the DFT
This chapter derives various Fourier theorems for the case of the
DFT. Included are symmetry relations, the shift theorem, convo-
lution theorem, correlation theorem, power theorem, and theorems
pertaining to interpolation and downsampling. Applications related
to certain theorems are outlined, including linear time-invariant fil-
tering, sampling rate conversion, and statistical signal processing.

• Example Applications of the DFT
This chapter goes through some practical examples of FFT anal-
ysis in Matlab. The various Fourier theorems provide a “thinking
vocabulary” for understanding elements of spectral analysis.

• A Basic Tutorial on Sampling Theory
This appendix provides a basic tutorial on sampling theory. Alias-
ing due to sampling of continuous-time signals is characterized math-
ematically. Shannon’s sampling theorem is proved. A pictorial rep-
resentation of continuous-time signal reconstruction from discrete-
time samples is given.
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Chapter 1

Introduction to the DFT

This chapter introduces the Discrete Fourier Transform (DFT) and points
out the elements which will be discussed in this reader.

1.1 DFT Definition

The Discrete Fourier Transform (DFT) of a signal x may be defined by

X(ωk)
∆=
N−1∑
n=0

x(tn)e−jωktn , k = 0, 1, 2, . . . , N − 1

and its inverse (the IDFT) is given by

x(tn) =
1
N

N−1∑
k=0

X(ωk)ejωktn , n = 0, 1, 2, . . . , N − 1

1



 

Page 2 1.1. DFT DEFINITION

where

x(tn)
∆= input signal amplitude at time tn (sec)

tn
∆= nT = nth sampling instant (sec)

n
∆= sample number (integer)

T
∆= sampling period (sec)

X(ωk)
∆= Spectrum of x, at radian frequency ωk

ωk
∆= kΩ = kth frequency sample (rad/sec)

Ω ∆=
2π
NT

= radian-frequency sampling interval

fs
∆= 1/T = sampling rate (samples/sec, or Hertz (Hz))

N = number of samples in both time and frequency (integer)
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1.2 Mathematics of the DFT

In the signal processing literature, it is common to write the DFT in the
more pure form obtained by setting T = 1 in the previous definition:

X(k) ∆=
N−1∑
n=0

x(n)e−j2πnk/N , k = 0, 1, 2, . . . , N − 1

x(n) =
1
N

N−1∑
k=0

X(k)ej2πnk/N , n = 0, 1, 2, . . . , N − 1

where x(n) denotes the input signal at time (sample) n, andX(k) denotes
the kth spectral sample.1 This form is the simplest mathematically while
the previous form is the easier to interpret physically.

There are two remaining symbols in the DFT that we have not yet
defined:

j
∆=

√−1
e

∆= lim
n→∞

(
1 +

1
n

)n
= 2.71828182845905 . . .

The first, j =
√−1, is the basis for complex numbers. As a result, complex

numbers will be the first topic we cover in this reader (but only to the
extent needed to understand the DFT).

The second, e = 2.718 . . ., is a transcendental number defined by the
above limit. In this reader, we will derive e and talk about why it comes
up.

Note that not only do we have complex numbers to contend with, but
we have them appearing in exponents, as in

sk(n)
∆= ej2πnk/N

We will systematically develop what we mean by imaginary exponents in
order that such mathematical expressions are well defined.

With e, j, and imaginary exponents understood, we can go on to
prove Euler’s Identity :

ejθ = cos(θ) + j sin(θ)
1Note that the definition of x() has changed unless the sampling rate fs really is 1,

and the definition of X() has changed no matter what the sampling rate is, since when
T = 1, ωk = 2πk/N , not k.
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Page 4 1.2. MATHEMATICS OF THE DFT

Euler’s Identity is the key to understanding the meaning of expressions
like

sk(tn)
∆= ejωktn = cos(ωktn) + j sin(ωktn)

We’ll see that such an expression defines a sampled complex sinusoid, and
we’ll talk about sinusoids in some detail, from an audio perspective.

Finally, we need to understand what the summation over n is doing
in the definition of the DFT. We’ll learn that it should be seen as the
computation of the inner product of the signals x and sk, so that we may
write the DFT using inner-product notation as

X(k) ∆= 〈x, sk〉
where

sk(n)
∆= ej2πnk/N

is the sampled complex sinusoid at (normalized) radian frequency ωk =
2πk/N , and the inner product operation is defined by

〈x, y〉 ∆=
N−1∑
n=0

x(n)y(n)

We will show that the inner product of x with the kth “basis sinusoid”
sk is a measure of “how much” of sk is present in x and at “what phase”
(since it is a complex number).

After the foregoing, the inverse DFT can be understood as the weighted
sum of projections of x onto {sk}N−1

k=0 , i.e.,

x(n) ∆=
N−1∑
k=0

X̃ksk(n)

where
X̃k

∆=
X(k)
N

is the (actual) coefficient of projection of x onto sk. Referring to the
whole signal as x ∆= x(·), the IDFT can be written as

x
∆=
N−1∑
k=0

X̃ksk

Note that both the basis sinusoids sk and their coefficients of projection
X̃k are complex.

DRAFT of “Mathematics of the Discrete Fourier Transform (DFT),” by J.O.
Smith, CCRMA, Stanford, Winter 2002. The latest draft and linked HTML

version are available on-line at http://www-ccrma.stanford.edu/~jos/mdft/.



 

CHAPTER 1. INTRODUCTION TO THE DFT Page 5

Having completely understood the DFT and its inverse mathemati-
cally, we go on to proving various Fourier Theorems, such as the “shift
theorem,” the “convolution theorem,” and “Parseval’s theorem.” The
Fourier theorems provide a basic thinking vocabulary for working with
signals in the time and frequency domains. They can be used to answer
questions like

What happens in the frequency domain if I do [x] in the time
domain?

Finally, we will study a variety of practical spectrum analysis exam-
ples, using primarily Matlab to analyze and display signals and their
spectra.
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Page 6 1.3. DFT MATH OUTLINE

1.3 DFT Math Outline

In summary, understanding the DFT takes us through the following top-
ics:

1. Complex numbers

2. Complex exponents

3. Why e?

4. Euler’s formula

5. Projecting signals onto signals via the inner product

6. The DFT as the coefficient of projection of a signal x onto a sinusoid

7. The IDFT as a weighted sum of sinusoidal projections

8. Various Fourier theorems

9. Elementary time-frequency pairs

10. Practical spectrum analysis in matlab

We will additionally discuss practical aspects of working with sinu-
soids, such as decibels (dB) and display techniques.
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Chapter 2

Complex Numbers

This chapter provides an introduction to complex numbers, factoring
polynomials, the quadratic formula, the complex plane, Euler’s formula,
and an overview of numerical facilities for complex numbers in Matlab
and Mathematica.

2.1 Factoring a Polynomial

Remember “factoring polynomials”? Consider the second-order polyno-
mial

p(x) = x2 − 5x+ 6
It is second-order because the highest power of x is 2 (only non-negative
integer powers of x are allowed in this context). The polynomial is also
monic because its leading coefficient, the coefficient of x2, is 1. Since it is
second order, there are at most two real roots (or zeros) of the polynomial.
Suppose they are denoted x1 and x2. Then we have p(x1) = 0 and
p(x2) = 0, and we can write

p(x) = (x− x1)(x− x2)

This is the factored form of the monic polynomial p(x). (For a non-monic
polynomial, we may simply divide all coefficients by the first to make it
monic, and this doesn’t affect the zeros.) Multiplying out the symbolic
factored form gives

p(x) = (x− x1)(x− x2) = x2 − (x1 + x2)x+ x1x2

7
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Comparing with the original polynomial, we find we must have

x1 + x2 = 5
x1x2 = 6

This is a system of two equations in two unknowns. Unfortunately, it
is a nonlinear system of two equations in two unknowns.1 Nevertheless,
because it is so small, the equations are easily solved. In beginning alge-
bra, we did them by hand. However, nowadays we can use a computer
program such as Mathematica:

In[]:=
Solve[{x1+x2==5, x1 x2 == 6}, {x1,x2}]

Out[]:
{{x1 -> 2, x2 -> 3}, {x1 -> 3, x2 -> 2}}

Note that the two lists of substitutions point out that it doesn’t matter
which root is 2 and which is 3. In summary, the factored form of this
simple example is

p(x) = x2 − 5x+ 6 = (x− x1)(x− x2) = (x− 2)(x− 3)
Note that polynomial factorization rewrites a monic nth-order polyno-
mial as the product of n first-order monic polynomials, each of which
contributes one zero (root) to the product. This factoring business is
often used when working with digital filters.

2.2 The Quadratic Formula

The general second-order polynomial is

p(x) ∆= ax2 + bx+ c

where the coefficients a, b, c are any real numbers, and we assume a 	= 0
since otherwise it would not be second order. Some experiments plotting

1“Linear” in this context means that the unknowns are multiplied only by
constants—they may not be multiplied by each other or raised to any power other
than 1 (e.g., not squared or cubed or raised to the 1/5 power). Linear systems of N
equations in N unknowns are very easy to solve compared to nonlinear systems of N
equations in N unknowns. For example, Matlab or Mathematica can easily handle
them. You learn all about this in a course on Linear Algebra which is highly recom-
mended for anyone interested in getting involved with signal processing. Linear algebra
also teaches you all about matrices which we will introduce only briefly in this reader.

DRAFT of “Mathematics of the Discrete Fourier Transform (DFT),” by J.O.
Smith, CCRMA, Stanford, Winter 2002. The latest draft and linked HTML

version are available on-line at http://www-ccrma.stanford.edu/~jos/mdft/.
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p(x) for different values of the coefficients leads one to guess that the
curve is always a scaled and translated parabola. The canonical parabola
centered at x = x0 is given by

y(x) = d(x− x0)2 + e

where d determines the width and e provides an arbitrary vertical offset.
If we can find d, e, x0 in terms of a, b, c for any quadratic polynomial,
then we can easily factor the polynomial. This is called “completing the
square.” Multiplying out y(x), we get

y(x) = d(x− x0)2 + e = dx2 − 2dx0x+ dx2
0 + e

Equating coefficients of like powers of x gives

d = a

−2dx0 = b ⇒ x0 = −b/(2a)
dx2

0 + e = c ⇒ e = c− b2/(4a)

Using these answers, any second-order polynomial p(x) = ax2 + bx + c
can be rewritten as a scaled, translated parabola

p(x) = a
(
x+

b

2a

)2

+
(
c− b

2

4a

)
.

In this form, the roots are easily found by solving p(x) = 0 to get

x =
−b±√b2 − 4ac

2a

This is the general quadratic formula. It was obtained by simple algebraic
manipulation of the original polynomial. There is only one “catch.” What
happens when b2 − 4ac is negative? This introduces the square root of
a negative number which we could insist “does not exist.” Alternatively,
we could invent complex numbers to accommodate it.

2.3 Complex Roots

As a simple example, let a = 1, b = 0, and c = 4, i.e.,

p(x) = x2 + 4
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Figure 2.1: An example parabola defined by p(x) = x2 + 4.

As shown in Fig. 2.1, this is a parabola centered at x = 0 (where p(0) = 4)
and reaching upward to positive infinity, never going below 4. It has no
zeros. On the other hand, the quadratic formula says that the “roots”
are given formally by x = ±√−4 = ±2√−1. The square root of any
negative number c < 0 can be expressed as

√|c|√−1, so the only new
algebraic object is

√−1. Let’s give it a name:

j
∆=
√−1

Then, formally, the roots of of x2+4 are ±2j, and we can formally express
the polynomial in terms of its roots as

p(x) = (x+ 2j)(x− 2j)

We can think of these as “imaginary roots” in the sense that square roots
of negative numbers don’t really exist, or we can extend the concept of
“roots” to allow for complex numbers, that is, numbers of the form

z = x+ jy

where x and y are real numbers, and j2 ∆= −1.
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It can be checked that all algebraic operations for real numbers2 ap-
ply equally well to complex numers. Both real numbers and complex
numbers are examples of a mathematical field. Fields are closed with
respect to multiplication and addition, and all the rules of algebra we use
in manipulating polynomials with real coefficients (and roots) carry over
unchanged to polynomials with complex coefficients and roots. In fact,
the rules of algebra become simpler for complex numbers because, as dis-
cussed in the next section, we can always factor polynomials completely
over the field of complex numbers while we cannot do this over the reals
(as we saw in the example p(x) = x2 + 4).

2.4 Fundamental Theorem of Algebra

Every nth-order polynomial possesses exactly n complex roots.

This is a very powerful algebraic tool. It says that given any polynomial

p(x) = anx
n + an−1x

n−1 + an−2x
n−2 + · · ·+ a2x2 + a1x+ a0

∆=
n∑
i=0

aix
i

we can always rewrite it as

p(x) = an(x− zn)(x− zn−1)(x− zn−2) · · · (x− z2)(x− z1)
∆= an

n∏
i=1

(x− zi)

where the points zi are the polynomial roots, and they may be real or
complex.

2.5 Complex Basics

This section introduces various notation and terms associated with com-
plex numbers. As discussed above, complex numbers are devised by intro-
ducing the square-root of −1 as a primitive new algebraic object among

2multiplication, addition, division, distributivity of multiplication over addition,
commutativity of multiplication and addition.
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Page 12 2.5. COMPLEX BASICS

real numbers and manipulating it symbolically as if it were a real number
itself:

j
∆=
√−1

Mathemeticians and physicists often use i instead of j as
√−1. The use

of j is common in engineering where i is more often used for electrical
current.

As mentioned above, for any negative number c < 0, we have
√
c =√

(−1)(−c) = j√|c|, where |c| denotes the absolute value of c. Thus,
every square root of a negative number can be expressed as j times the
square root of a positive number.

By definition, we have

j0 = 1
j1 = j

j2 = −1
j3 = −j
j4 = 1

· · ·
and so on. Thus, the sequence x(n) ∆= jn, n = 0, 1, 2, . . . is a periodic
sequence with period 4, since jn+4 = jnj4 = jn. (We’ll learn later that
the sequence jn is a sampled complex sinusoid having frequency equal to
one fourth the sampling rate.)

Every complex number z can be written as

z = x+ jy

where x and y are real numbers. We call x the real part and y the
imaginary part . We may also use the notation

re {z} = x (“the real part of z = x+ jy is x”)
im {z} = y (“the imaginary part of z = x+ jy is y”)

Note that the real numbers are the subset of the complex numbers having
a zero imaginary part (y = 0).

The rule for complex multiplication follows directly from the definition
of the imaginary unit j:

z1z2
∆= (x1 + jy1)(x2 + jy2)
= x1x2 + jx1y2 + jy1x2 + j2y1y2
= (x1x2 − y1y2) + j(x1y2 + y1x2)
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In some mathematics texts, complex numbers z are defined as ordered
pairs of real numbers (x, y), and algebraic operations such as multipli-
cation are defined more formally as operations on ordered pairs, e.g.,
(x1, y1) · (x2, y2)

∆= (x1x2 − y1y2, x1y2 + y1x2). However, such formal-
ity tends to obscure the underlying simplicity of complex numbers as a
straightforward extension of real numbers to include j ∆=

√−1.
It is important to realize that complex numbers can be treated alge-

braically just like real numbers. That is, they can be added, subtracted,
multiplied, divided, etc., using exactly the same rules of algebra (since
both real and complex numbers are mathematical fields). It is often
preferable to think of complex numbers as being the true and proper set-
ting for algebraic operations, with real numbers being the limited subset
for which y = 0.

To explore further the magical world of complex variables, see any
textbook such as [1, 2].

2.5.1 The Complex Plane

Real Part

Im
ag

in
ar

y 
Pa

rt

θ

x

y z = x + j y

r r  sin θ

r  cos θ

Figure 2.2: Plotting a complex number as a point in the complex
plane.

We can plot any complex number z = x+ jy in a plane as an ordered
pair (x, y), as shown in Fig. 2.2. A complex plane is any 2D graph in
which the horizontal axis is the real part and the vertical axis is the
imaginary part of a complex number or function. As an example, the
number j has coordinates (0, 1) in the complex plane while the number 1
has coordinates (1, 0).

Plotting z = x + jy as the point (x, y) in the complex plane can be
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viewed as a plot in Cartesian or rectilinear coordinates. We can also
express complex numbers in terms of polar coordinates as an ordered pair
(r, θ), where r is the distance from the origin (0, 0) to the number being
plotted, and θ is the angle of the number relative to the positive real
coordinate axis (the line defined by y = 0 and x > 0). (See Fig. 2.2.)

Using elementary geometry, it is quick to show that conversion from
rectangular to polar coordinates is accomplished by the formulas

r =
√
x2 + y2

θ = tan−1(y/x).

The first equation follows immediately from the Pythagorean theorem ,
while the second follows immediately from the definition of the tangent
function. Similarly, conversion from polar to rectangular coordinates is
simply

x = r cos(θ)
y = r sin(θ).

These follow immediately from the definitions of cosine and sine, respec-
tively,

2.5.2 More Notation and Terminology

It’s already been mentioned that the rectilinear coordinates of a complex
number z = x + jy in the complex plane are called the real part and
imaginary part, respectively.

We also have special notation and various names for the radius and
angle of a complex number z expressed in polar coordinates (r, θ):

r
∆= |z| =

√
x2 + y2

= modulus, magnitude, absolute value, norm, or radius of z

θ
∆= � z = tan−1(y/x)
= angle, argument , or phase of z

The complex conjugate of z is denoted z and is defined by

z
∆= x− jy
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