

000

• Table of
Contents

Hacker's Delight

By Henry S. Warren,

Publisher: Addison Wesley

Pub Date: July 17, 2002

ISBN: 0-201-91465-4

Pages: 320

 Ripped by Caudex 2003

"This is the first book that promises to tell the deep, dark secrets of computer
arithmetic, and it delivers in spades. It contains every trick I knew plus many, many
more. A godsend for library developers, compiler writers, and lovers of elegant hacks,
it deserves a spot on your shelf right next to Knuth."-Josh Bloch

"When I first saw the title, I figured that the book must be either a cookbook for
breaking into computers (unlikely) or some sort of compendium of little programming
tricks. It's the latter, but it's thorough, almost encyclopedic, in its coverage." -Guy
Steele

These are the timesaving techniques relished by computer hackers-those devoted and
persistent code developers who seek elegant and efficient ways to build better
software. The truth is that much of the computer programmer's job involves a healthy
mix of arithmetic and logic. In Hacker's Delight, veteran programmer Hank Warren
shares the tricks he has collected from his considerable experience in the worlds of
application and system programming. Most of these techniques are eminently
practical, but a few are included just because they are interesting and unexpected. The
resulting work is an irresistible collection that will help even the most seasoned
programmers better their craft.

Topics covered include:

• A broad collection of useful programming tricks

• Small algorithms for common tasks

• Power-of-2 boundaries and bounds checking

• Rearranging bits and bytes

• Integer division and division by constants

• Some elementary functions on integers

file:///I|/2/000.htm (1 of 2) [21.07.2007 09:41:20]

000

• Gray code

• Hilbert's space-filling curve

• And even formulas for prime numbers!

This book is for anyone who wants to create efficient code. Hacker's Delight will help
you learn to program at a higher level-well beyond what is generally taught in schools
and training courses-and will advance you substantially further than is possible
through ordinary self-study alone.

file:///I|/2/000.htm (2 of 2) [21.07.2007 09:41:20]

Copyright

Copyright

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a trademark
claim, the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For more information,
please contact:

U.S. Corporate and Government Sales

(800) 382-3149

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales

(317) 581-3793

international@pearsontechgroup.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Warren, Henry S.

Hacker's delight / Henry S. Warren, Jr.

p. cm.

Includes bibliographical references and index.

file:///I|/2/001.htm (1 of 2) [21.07.2007 09:41:20]

Copyright

1. Computer programming. I. Title.

QA76.6 .W375 2002

005.1—dc21

2002066501

Copyright © 2003 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior
consent of the publisher. Printed in the United States of America. Published simultaneously in Canada.

For information on obtaining permission for use of material from this work, please submit a written request to:

Pearson Education, Inc.

Rights and Contracts Department

75 Arlington Street, Suite 300

Boston, MA 02116

Fax: (617) 848-7047

Text printed on recycled paper

1 2 3 4 5 6 7 8 9 10—MA—0605040302

First printing, July 2002

Dedication

To Joseph W. Gauld, my high school algebra teacher, for sparking in me a delight in the simple things in
mathematics.

file:///I|/2/001.htm (2 of 2) [21.07.2007 09:41:20]

Foreword

Foreword

When I first got a summer job at MIT's Project MAC almost 30 years ago, I was delighted to be able to work
with the DEC PDP-10 computer, which was more fun to program in assembly language than any other
computer, bar none, because of its rich yet tractable set of instructions for performing bit tests, bit masking,
field manipulation, and operations on integers. Though the PDP-10 has not been manufactured for quite some
years, there remains a thriving cult of enthusiasts who keep old PDP-10 hardware running and who run old
PDP-10 software—entire operating systems and their applications—by using personal computers to simulate
the PDP-10 instruction set. They even write new software; there is now at least one Web site whose pages are
served up by a simulated PDP-10. (Come on, stop laughing—it's no sillier than keeping antique cars running.)

I also enjoyed, in that summer of 1972, reading a brand-new MIT research memo called HAKMEM, a bizarre

and eclectic potpourri of technical trivia.
[1]

 The subject matter ranged from electrical circuits to number theory,
but what intrigued me most was its small catalog of ingenious little programming tricks. Each such gem would
typically describe some plausible yet unusual operation on integers or bit strings (such as counting the 1-bits in
a word) that could easily be programmed using either a longish fixed sequence of machine instructions or a
loop, and then show how the same thing might be done much more cleverly, using just four or three or two
carefully chosen instructions whose interactions are not at all obvious until explained or fathomed. For me,
devouring these little programming nuggets was like eating peanuts, or rather bonbons—I just couldn't stop—
and there was a certain richness to them, a certain intellectual depth, elegance, even poetry.

[1] Why "HAKMEM"? Short for "hacks memo"; one 36-bit PDP-10 word could hold six 6-bit characters, so a lot of the
names PDP-10 hackers worked with were limited to six characters. We were used to glancing at a six-character
abbreviated name and instantly decoding the contractions. So naming the memo "HAKMEM" made sense at the time
—at least to the hackers.

"Surely," I thought, "there must be more of these," and indeed over the years I collected, and in some cases
discovered, a few more. "There ought to be a book of them."

I was genuinely thrilled when I saw Hank Warren's manuscript. He has systematically collected these little
programming tricks, organized them thematically, and explained them clearly. While some of them may be
described in terms of machine instructions, this is not a book only for assembly language programmers. The
subject matter is basic structural relationships among integers and bit strings in a computer and efficient
techniques for performing useful operations on them.

These techniques are just as useful in the C or Java programming languages as they are in assembly language.

Many books on algorithms and data structures teach complicated techniques for sorting and searching, for
maintaining hash tables and binary trees, for dealing with records and pointers. They overlook what can be
done with very tiny pieces of data—bits and arrays of bits. It is amazing what can be done with just binary
addition and subtraction and maybe some bitwise operations; the fact that the carry chain allows a single bit to
affect all the bits to its left makes addition a peculiarly powerful data manipulation operation in ways that are

file:///I|/2/002.htm (1 of 2) [21.07.2007 09:41:21]

Foreword

not widely appreciated.

Yes, there ought to be a book about these techniques. Now it is in your hands, and it's terrific. If you write
optimizing compilers or high-performance code, you must read this book. You otherwise might not use this bag
of tricks every single day—but if you find yourself stuck in some situation where you apparently need to loop
over the bits in a word, or to perform some operation on integers and it just seems harder to code than it ought,
or you really need the inner loop of some integer or bit-fiddly computation to run twice as fast, then this is the
place to look. Or maybe you'll just find yourself reading it straight through out of sheer pleasure.

Guy L. Steele, Jr.
Burlington, Massachusetts
April 2002

file:///I|/2/002.htm (2 of 2) [21.07.2007 09:41:21]

Preface

Preface

Caveat Emptor: The cost of software maintenance increases with the square of the programmer's creativity.

—First Law of Programmer Creativity, Robert D. Bliss, 1992

This is a collection of small programming tricks that I have come across over many years. Most of them will
work only on computers that represent integers in two's-complement form. Although a 32-bit machine is
assumed when the register length is relevant, most of the tricks are easily adapted to machines with other
register sizes.

This book does not deal with large tricks such as sophisticated sorting and compiler optimization techniques.
Rather, it deals with small tricks that usually involve individual computer words or instructions, such as
counting the number of 1-bits in a word. Such tricks often use a mixture of arithmetic and logical instructions.

It is assumed throughout that integer overflow interrupts have been masked off, so they cannot occur. C,
Fortran, and even Java programs run in this environment, but Pascal and ADA users beware!

The presentation is informal. Proofs are given only when the algorithm is not obvious, and sometimes not even
then. The methods use computer arithmetic, "floor" functions, mixtures of arithmetic and logical operations,
and so on. Proofs in this domain are often difficult and awkward to express.

To reduce typographical errors and oversights, many of the algorithms have been executed. This is why they
are given in a real programming language, even though, like every computer language, it has some ugly
features. C is used for the high-level language because it is widely known, it allows the straightforward mixture
of integer and bit-string operations, and C compilers that produce high-quality object code are available.

Occasionally, machine language is used. It employs a three-address format, mainly for ease of readability. The
assembly language used is that of a fictitious machine that is representative of today's RISC computers.

Branch-free code is favored. This is because on many computers, branches slow down instruction fetching and
inhibit executing instructions in parallel. Another problem with branches is that they may inhibit compiler
optimizations such as instruction scheduling, commoning, and register allocation. That is, the compiler may be
more effective at these optimizations with a program that consists of a few large basic blocks rather than many
small ones.

The code sequences also tend to favor small immediate values, comparisons to zero (rather than to some other
number), and instruction-level parallelism. Although much of the code would become more concise by using
table lookups (from memory), this is not often mentioned. This is because loads are becoming more expensive
relative to arithmetic instructions, and the table lookup methods are often not very interesting (although they
are often practical). But there are exceptional cases.

file:///I|/2/003.htm (1 of 2) [21.07.2007 09:41:21]

Preface

Finally, I should mention that the term "hacker" in the title is meant in the original sense of an aficionado of
computers—someone who enjoys making computers do new things, or do old things in a new and clever way.
The hacker is usually quite good at his craft, but may very well not be a professional computer programmer or
designer. The hacker's work may be useful or may be just a game. As an example of the latter, more than one

determined hacker has written a program which, when executed, writes out an exact copy of itself.
[1]

 This is
the sense in which we use the term "hacker." If you're looking for tips on how to break into someone else's
computer, you won't find them here.

[1] The shortest such program written in C, known to the present author, is by Vlad Taeerov and Rashit Fakhreyev and
is 64 characters in length:

main(a){printf(a,34,a="main(a){printf(a,34,a=%c%s%c,34);}",34);}

file:///I|/2/003.htm (2 of 2) [21.07.2007 09:41:21]

Acknowledgments

Acknowledgments

First, I want to thank Bruce Shriver and Dennis Allison for encouraging me to publish this book. I am indebted
to many colleagues at IBM, several of whom are cited in the Bibliography. But one deserves special mention:
Martin E. Hopkins, whom I think of as "Mr. Compiler" at IBM, has been relentless in his drive to make every
cycle count, and I'm sure some of his spirit has rubbed off on me. Addison-Wesley's reviewers have improved
the book immensely. Most of their names are unknown to me, but the review by one whose name I did learn
was truly outstanding: Guy L. Steele, Jr., completed a 50-page review that included new subject areas to
address, such as bit shuffling and unshuffling, the sheep and goats operation, and many others that will have to

wait for a second edition (). He suggested algorithms that beat the ones I used. He was extremely thorough.
For example, I had erroneously written that the hexadecimal number AAAAAAAA factors as 2 · 3 · 17 · 257 ·
65537; Guy pointed out that the 3 should be a 5. He suggested improvements to style and did not shirk from
mentioning minutiae. Wherever you see "parallel prefix" in this book, the material is due to Guy.

H. S. Warren, Jr.
Yorktown, New York
February 2002

file:///I|/2/004.htm [21.07.2007 09:41:21]

Chapter 1. Introduction

Chapter 1. Introduction

Notation

Instruction Set and Execution Time Model

file:///I|/2/005.htm [21.07.2007 09:41:21]

1-1 Notation

1-1 Notation

This book distinguishes between mathematical expressions of ordinary arithmetic and those that describe the
operation of a computer. In "computer arithmetic," operands are bit strings, or bit vectors, of some definite
fixed length. Expressions in computer arithmetic are similar to those of ordinary arithmetic, but the variables
denote the contents of computer registers. The value of a computer arithmetic expression is simply a string of
bits with no particular interpretation. An operator, however, interprets its operands in some particular way. For
example, a comparison operator might interpret its operands as signed binary integers or as unsigned binary
integers; our computer arithmetic notation uses distinct symbols to make the type of comparison clear.

The main difference between computer arithmetic and ordinary arithmetic is that in computer arithmetic, the
results of addition, subtraction, and multiplication are reduced modulo 2n, where n is the word size of the
machine. Another difference is that computer arithmetic includes a large number of operations. In addition to
the four basic arithmetic operations, computer arithmetic includes logical and, exclusive or, compare, shift left,
and so on.

Unless specified otherwise, the word size is 32 bits, and signed integers are represented in two's-complement
form.

Expressions of computer arithmetic are written similarly to those of ordinary arithmetic, except that the
variables that denote the contents of computer registers are in bold-face type. This convention is commonly
used in vector algebra. We regard a computer word as a vector of single bits. Constants also appear in bold-face
type when they denote the contents of a computer register. (This has no analogy with vector algebra because in
vector algebra the only way to write a constant is to display the vector's components.) When a constant denotes
part of an instruction, such as the immediate field of a shift instruction, light-face type is used.

If an operator such as "+" has bold-face operands, then that operator denotes the computer's addition operation
("vector addition"). If the operands are light-faced, then the operator denotes the ordinary scalar arithmetic
operation. We use a light-faced variable x to denote the arithmetic value of a bold-faced variable x under an
interpretation (signed or unsigned) that should be clear from the context. Thus, if x = 0x80000000 and y =
0x80000000, then, under signed integer interpretation, x = y = -231, x + y = -232, and x + y = 0. Here,
0x80000000 is hexadecimal notation for a bit string consisting of a 1-bit followed by 31 0-bits.

Bits are numbered from the right, with the rightmost (least significant) bit being bit 0. The terms "bits,"
"nibbles," "bytes," "halfwords," "words," and "doublewords" refer to lengths of 1, 4, 8, 16, 32, and 64 bits,
respectively.

Short and simple sections of code are written in computer algebra, using its assignment operator (left arrow)
and occasionally an if statement. In this role, computer algebra is serving as little more than a machine-
independent way of writing assembly language code.

Longer or more complex computer programs are written in the C++ programming language. None of the object-

file:///I|/2/006.htm (1 of 5) [21.07.2007 09:41:22]

1-1 Notation

oriented features of C++ are used; the programs are basically in C with comments in C++ style. When the
distinction is unimportant, the language is referred to simply as "C."

A complete description of C would be out of place in this book, but Table 1-1 contains a brief summary of most
of the elements of C [H&S] that are used herein. This is provided for the benefit of the reader who is familiar
with some procedural programming language but not with C. Table 1-1 also shows the operators of our
computer-algebraic arithmetic language. Operators are listed from highest precedence (tightest binding) to
lowest. In the Precedence column, L means left-associative; that is,

and R means right-associative. Our computer-algebraic notation follows C in precedence and associativity.

In addition to the notations described in Table 1-1, those of Boolean algebra and of standard mathematics are
used, with explanations where necessary.

Table 1-1. Expressions of C and Computer Algebra

Precedence C Computer Algebra Description

 0x… 0x…, 0b… Hexadecimal, binary constants

16 a[k] Selecting the kth component

16 x0, x1, … Different variables, or bit selection (clarified in text)

16 f(x,…) f(x, …) Function evaluation

16 abs(x) Absolute value (but abs(-231) = -231)

16 nabs(x) Negative of the absolute value

15 x++, x-- Postincrement, decrement

14 ++x, --x Preincrement, decrement

file:///I|/2/006.htm (2 of 5) [21.07.2007 09:41:22]

1-1 Notation

14 (type name)x Type conversion

14 R xk x to the kth power

14 ~x ¬x, x¯ Bitwise not (one's-complement)

14 !x Logical not (if x = 0 then 1 else 0)

14 -x -x Arithmetic negation

13 L x*y x * y Multiplication, modulo word size

13 L x/y x ÷ y Signed integer division

13 L x/y

Unsigned integer division

13 L x%y rem(x, y) Remainder (may be negative), of (x ÷ y) signed
arguments

13 L x%y rem(x, y) Remainder of unsigned arguments

 mod(x, y) x reduced modulo y to the interval [0, abs(y) - 1];
signed arguments

12 L x + y, x - y x + y, x - y Addition, subtraction

11 L x << y, x >> y Shift left, right with 0-fill ("logical" shifts)

11 L x >> y Shift right with sign-fill ("arithmetic" or "algebraic"
shift)

11 L Rotate shift left, right

file:///I|/2/006.htm (3 of 5) [21.07.2007 09:41:22]

1-1 Notation

10 L x < y, x <= y,

x > y, x >= y

x < y, x y,

x > y, x y,

Signed comparison

10 L x < y, x <= y,

x > y, x >= y

Unsigned comparison

9 L x == y, x != y x = y, x y Equality, inequality

8 L x & y x & y Bitwise and

7 L x ^ y x y Bitwise exclusive or

7 L x y Bitwise equivalence (¬(x y))

6 L x | y x | y Bitwise or

5 L x && y Conditional and (if x = 0 then 0 else if y = 0 then 0
else 1)

4 L x || y Conditional or (if x 0 then 1 else if y 0 then 1
else 0)

3 L x || y Concatenation

2 R x = y x y Assignment

Our computer algebra uses other functions, in addition to "abs," "rem," and so on. These are defined where
introduced.

In C, the expression x < y < z means to evaluate x < y to a 0/1-valued result, and then compare that result to
z. In computer algebra, the expression x < y < z means (x < y) & (y < z).

C has three loop control statements: while, do, and for. The while statement is written:

file:///I|/2/006.htm (4 of 5) [21.07.2007 09:41:22]

1-1 Notation

while (expression) statement

First, expression is evaluated. If true (nonzero), statement is executed and control returns to evaluate
expression again. If expression is false (0), the while-loop terminates.

The do statement is similar, except the test is at the bottom of the loop. It is written:

do statement while (expression)

First, statement is executed, and then expression is evaluated. If true, the process is repeated, and if false, the
loop terminates.

The for statement is written:

for (e1; e2; e3) statement

First, e1, usually an assignment statement, is executed. Then e2, usually a comparison, is evaluated. If false, the

for-loop terminates. If true, statement is executed. Finally, e3, usually an assignment statement, is executed,

and control returns to evaluate e2 again. Thus, the familiar "do i = 1 to n" is written:

for (i = 1; i <= n; i++)

(This is one of the few contexts in which we use the postincrement operator.)

file:///I|/2/006.htm (5 of 5) [21.07.2007 09:41:22]

1-2 Instruction Set and Execution Time Model

1-2 Instruction Set and Execution Time Model

To permit a rough comparison of algorithms, we imagine them being coded for a machine with an instruction
set similar to that of today's general purpose RISC computers, such as the Compaq Alpha, the SGI MIPS, and
the IBM RS/6000. The machine is three-address and has a fairly large number of general purpose registers—
that is, 16 or more. Unless otherwise specified, the registers are 32 bits long. General register 0 contains a
permanent 0, and the others can be used uniformly for any purpose.

In the interest of simplicity there are no "special purpose" registers, such as a condition register or a register to
hold status bits, such as "overflow." No floating-point operations are described, because that is beyond the
scope of this book.

We recognize two varieties of RISC: a "basic RISC," having the instructions shown in Table 1-2, and a "full
RISC," having all the instructions of the basic RISC plus those shown in Table 1-3.

Table 1-2. Basic RISC Instruction Set

Opcode Mnemonic Operands Description

add, sub, mul, div, divu,
rem, remu

RT,RA,RB RT RA op RB, where op is add,
subtract, multiply, divide signed, divide
unsigned, remainder signed, or remainder
unsigned.

addi, muli RT,RA,I RT RA op I, where op is add or
multiply, and I is a 16-bit signed immediate
value.

addis RT,RA,I RT RA + (I || 0x0000).

and, or, xor RT,RA,RB RT RA op RB, where op is bitwise and,
or, or exclusive or.

andi, ori, xori RT,RA,Iu As above, except the last operand is a 16-bit
unsigned immediate value.

file:///I|/2/007.htm (1 of 7) [21.07.2007 09:41:23]

1-2 Instruction Set and Execution Time Model

beq, bne, blt, ble, bgt, bge RT,target Branch to target if RT = 0, or if RT 0, or if

RT < 0, or if RT 0, or if RT > 0, or if RT

0 (signed integer interpretation of RT).

bt, bf RT,target Branch true/false; same as bne/beq resp.

cmpeq, cmpne, cmplt, cmple,
cmpgt, cmpge, cmpltu, cmpleu,
cmpgtu, cmpgeu

RT,RA,RB RT gets the result of comparing RA with RB; 0
if false and 1 if true. Mnemonics denote
compare for equality, inequality, less than, and
so on, as for the branch instructions, and in
addition, the suffix "u" denotes an unsigned
comparison.

cmpieq, cmpine, cmpilt,
cmpile, cmpigt, cmpige

RT,RA,I Like cmpeq, and so on, except the second
comparand is a 16-bit signed immediate value.

cmpiequ, cmpineu, cmpiltu,
cmpileu, cmpigtu, cmpigeu

RT,RA,Iu Like cmpltu, and so on, except the second
comparand is a 16-bit unsigned immediate
value.

ldbu, ldh, ldhu, ldw RT,d(RA) Load an unsigned byte, signed halfword,
unsigned halfword, or word into RT from
memory at location RA + d, where d is a 16-
bit signed immediate value.

mulhs, mulhu RT,RA,RB RT gets the high-order 32 bits of the product of
RA and RB; signed and unsigned.

not RT,RA RT bitwise one's-complement of RA.

shl, shr, shrs RT,RA,RB RT RA shifted left or right by the amount
given in the rightmost six bits of RB; 0-fill
except for shrs, which is sign-fill. (The shift
amount is treated modulo 64.)

shli, shri, shrsi RT,RA,Iu RT RA shifted left or right by the amount
given in the 5-bit immediate field.

file:///I|/2/007.htm (2 of 7) [21.07.2007 09:41:23]

1-2 Instruction Set and Execution Time Model

stb, sth, stw RS,d(RA) Store a byte, halfword, or word, from RS into
memory at location RA + d, where d is a 16-
bit signed immediate value.

In these brief instruction descriptions, RA and RB appearing as source operands really means the contents of
those registers.

A real machine would have branch and link (for subroutine calls), branch to the address contained in a register
(for subroutine returns and "switches"), and possibly some instructions for dealing with special purpose
registers. It would, of course, have a number of privileged instructions and instructions for calling on supervisor
services. It might also have floating-point instructions.

Some other computational instructions that a RISC computer might have are identified in Table 1-3. These are
discussed in later chapters.

Table 1-3. Additional Instructions for the "Full RISC"

Opcode Mnemonic Operands Description

abs, nabs RT,RA RT gets the absolute value, or the negative of
the absolute value, of RA.

andc, eqv, nand, nor, orc RT,RA,RB Bitwise and with complement (of RB),
equivalence, negative and, negative or, and or
with complement.

extr RT,RA,I,L Extract bits I through I+L-1 of RA, and
place them right-adjusted in RT, with 0-fill.

extrs RT,RA,I,L Like extr, but sign-fill.

ins RT,RA,I,L Insert bits 0 through L-1 of RA into bits I
through I+L-1 of RT.

nlz RT,RA RT gets the number of leading 0's in RA (0 to
32).

file:///I|/2/007.htm (3 of 7) [21.07.2007 09:41:23]

1-2 Instruction Set and Execution Time Model

pop RT,RA RT gets the number of 1-bits in RA (0 to 32).

ldb RT,d(RA) Load a signed byte into RT from memory at
location RA + d, where d is a 16-bit signed
immediate value.

moveq, movne, movlt, movle,
movgt, movge

RT,RA,RB RT RB if RA = 0, or if RA 0, and so on,
else RT is unchanged.

shlr, shrr RT,RA,RB RT RA rotate-shifted left or right by the
amount given in the rightmost five bits of RB.

shlri, shrri RT,RA,Iu RT RA rotate-shifted left or right by the
amount given in the 5-bit immediate field.

trpeq, trpne, trplt, trple,
trpgt, trpge, trpltu, trpleu,
trpgtu, trpgeu

RA,RB Trap (interrupt) if RA = RB, or RA RB,
and so on.

trpieq, trpine, trpilt,
trpile, trpigt, trpige

RA,I Like trpeq, and so on, except the second
comparand is a 16-bit signed immediate value.

trpigtu, trpigeu trpiequ,
trpineu, trpiltu, trpileu,

RA,Iu Like trpltu, and so on, except the second
comparand is a 16-bit unsigned immediate
value.

It is convenient to provide the machine's assembler with a few "extended mnemonics." These are like macros
whose expansion is usually a single instruction. Some possibilities are shown in Table 1-4.

Table 1-4. Extended Mnemonics

Extended Mnemonic Expansion Description

b target beq R0,target Unconditional branch.

li RT,I See text Load immediate, -231 I < 232.

file:///I|/2/007.htm (4 of 7) [21.07.2007 09:41:23]

1-2 Instruction Set and Execution Time Model

mov RT,RA ori RT,RA,0 Move register RA to RT.

neg RT,RA sub RT,R0,RA Negate (two's-complement).

subi RT,RA,I addi RT,RA,-I Subtract immediate (I -215).

The load immediate instruction expands into one or two instructions, as required by the immediate value I. For
example, if 0 I < 216, an or immediate (ori) from R0 can be used. If -215 I < 0, an add immediate
(addi) from R0 can be used. If the rightmost 16 bits of I are 0, add immediate shifted (addis) can be used.
Otherwise, two instructions are required, such as addis followed by ori. (Alternatively, in the last case a
load from memory could be used, but for execution time and space estimates we assume that two elementary
arithmetic instructions are used.)

Of course, which instructions belong in the basic RISC, and which belong in the full RISC is very much a
matter of judgment. Quite possibly, divide unsigned and the remainder instructions should be moved to the full
RISC category. Shift right signed is another suspicious instruction, given its low frequency of use in the SPEC
benchmarks. The trouble is, in C it is easy to accidentally use these instructions, by doing a division with
unsigned operands when they could just as well be signed, and by doing a shift right with a signed quantity
(int) that could just as well be unsigned. Incidentally, shift right signed (or shift right arithmetic, as it is often
called) does not do a division of a signed integer by a power of 2; you need to add 1 to the result if the dividend
is negative and any nonzero bits are shifted out.

The distinction between basic and full RISC involves many other such questionable judgments, but we won't
dwell on them.

The instructions are limited to two source registers and one target, which simplifies the computer (e.g., the
register file requires no more than two read ports and one write port). It also simplifies an optimizing compiler,
because the compiler does not need to deal with instructions that have multiple targets. The price paid for this is
that a program that wants both the quotient and remainder of two numbers (not uncommon) must execute two
instructions (divide and remainder). The usual machine division algorithm produces the remainder as a by-
product, so many machines make them both available as a result of one execution of divide. Similar remarks
apply to obtaining the doubleword product of two words.

The conditional move instructions (e.g., moveq) ostensibly have only two source operands, but in a sense they
have three. Because the result of the instruction depends on the values in RT, RA, and RB, a machine that
executes instructions out of order must treat RT in these instructions as both a use and a set. That is, an
instruction that sets RT, followed by a conditional move that sets RT, must be executed in that order, and the
result of the first instruction cannot be discarded. Thus, the designer of such a machine may elect to omit the
conditional move instructions to avoid having to consider an instruction with (logically) three source operands.
On the other hand, the conditional move instructions do save branches.

file:///I|/2/007.htm (5 of 7) [21.07.2007 09:41:23]

1-2 Instruction Set and Execution Time Model

Instruction formats are not relevant to the purposes of this book, but the full RISC instruction set described
above, with floating point and a few supervisory instructions added, can be implemented with 32-bit
instructions on a machine with 32 general purpose registers (5-bit register fields). By reducing the immediate
fields of compare, load, store, and trap instructions to 14 bits, the same holds for a machine with 64 general
purpose registers (6-bit register fields).

Execution Time

We assume that all instructions execute in one cycle, except for the multiply, divide, and remainder
instructions, for which we do not assume any particular execution time. Branches take one cycle whether they
branch or fall through.

The load immediate instruction is counted as one or two cycles, depending on whether one or two elementary
arithmetic instructions are required to generate the constant in a register.

Although load and store instructions are not often used in this book, we assume they take one cycle and ignore
any load delay (time lapse between when a load instruction completes in the arithmetic unit, and when the
requested data is available for a subsequent instruction).

However, knowing the number of cycles used by all the arithmetic and logical instructions is often insufficient
for estimating the execution time of a program. Execution can be slowed substantially by load delays and by
delays in fetching instructions. These delays, although very important and increasing in importance, are not
discussed in this book. Another factor, one which improves execution time, is what is called "instruction-level
parallelism," which is found in many contemporary RISC chips, particularly those for "high-end" machines.

These machines have multiple execution units and sufficient instruction-dispatching capability to execute
instructions in parallel when they are independent (that is, when neither uses a result of the other, and they don't
both set the same register or status bit). Because this capability is now quite common, the presence of
independent operations is often pointed out in this book. Thus, we might say that such and such a formula can
be coded in such a way that it requires eight instructions and executes in five cycles on a machine with
unlimited instruction-level parallelism. This means that if the instructions are arranged in the proper order
("scheduled"), a machine with a sufficient number of adders, shifters, logical units, and registers can in
principle execute the code in five cycles.

We do not make too much of this, because machines differ greatly in their instruction-level parallelism
capabilities. For example, an IBM RS/6000 processor from ca. 1992 has a three-input adder, and can execute
two consecutive add-type instructions in parallel even when one feeds the other (e.g., an add feeding a
compare, or the base register of a load). As a contrary example, consider a simple computer, possibly for low-
cost embedded applications, that has only one read port on its register file. Normally, this machine would take
an extra cycle to do a second read of the register file for an instruction that has two register input operands.
However, suppose it has a bypass so that if an instruction feeds an operand of the immediately following
instruction, then that operand is available without reading the register file. On such a machine, it is actually
advantageous if each instruction feeds the next—that is, if the code has no parallelism.

file:///I|/2/007.htm (6 of 7) [21.07.2007 09:41:23]

1-2 Instruction Set and Execution Time Model

file:///I|/2/007.htm (7 of 7) [21.07.2007 09:41:23]

Chapter 2. Basics

Chapter 2. Basics

Manipulating Rightmost Bits

Addition Combined with Logical Operations

Inequalities among Logical and Arithmetic Expressions

Absolute Value Function

Sign Extension

Shift Right Signed from Unsigned

Sign Function

Three-Valued Compare Function

Transfer of Sign

Decoding a "Zero Means 2**n" Field

Comparison Predicates

Overflow Detection

Condition Code Result of Add, Subtract, and Multiply

Rotate Shifts

Double-Length Add/Subtract

Double-Length Shifts

Multibyte Add, Subtract, Absolute Value

Doz, Max, Min

file:///I|/2/008.htm (1 of 2) [21.07.2007 09:41:23]

sample content of Hacker's Delight

Tough Without a Gun: The Life and Extraordinary Afterlife of Humphrey Bogart online
read online La Sposa giovane
read online Schizophrenia: A Brother Finds Answers in Biological Science
click The Annotated Lolita pdf, azw (kindle), epub
Tip of the Tongue (Doctor Who: 50th Anniversary, Fifth Doctor) online
download online Tour de Force (Inspector Cockrill, Book 6)

http://anvilpr.com/library/The-Man-with-the-Getaway-Face--Parker--Book-2-.pdf
http://thermco.pl/library/La-Sposa-giovane.pdf
http://flog.co.id/library/Schizophrenia--A-Brother-Finds-Answers-in-Biological-Science.pdf
http://monkeybubblemedia.com/lib/The-Annotated-Lolita.pdf
http://damianfoster.com/books/Mastering-the-Art-of-Confidence.pdf
http://fortune-touko.com/library/Tour-de-Force--Inspector-Cockrill--Book-6-.pdf

Powered by TCPDF (www.tcpdf.org)

http://anvilpr.com/library/The-Man-with-the-Getaway-Face--Parker--Book-2-.pdf
http://thermco.pl/library/La-Sposa-giovane.pdf
http://flog.co.id/library/Schizophrenia--A-Brother-Finds-Answers-in-Biological-Science.pdf
http://monkeybubblemedia.com/lib/The-Annotated-Lolita.pdf
http://damianfoster.com/books/Mastering-the-Art-of-Confidence.pdf
http://fortune-touko.com/library/Tour-de-Force--Inspector-Cockrill--Book-6-.pdf
http://anvilpr.com/library/The-Man-with-the-Getaway-Face--Parker--Book-2-.pdf
http://thermco.pl/library/La-Sposa-giovane.pdf
http://flog.co.id/library/Schizophrenia--A-Brother-Finds-Answers-in-Biological-Science.pdf
http://monkeybubblemedia.com/lib/The-Annotated-Lolita.pdf
http://damianfoster.com/books/Mastering-the-Art-of-Confidence.pdf
http://fortune-touko.com/library/Tour-de-Force--Inspector-Cockrill--Book-6-.pdf
http://www.tcpdf.org

