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"This is the first book that promises to tell the deep, dark secrets of computer 
arithmetic, and it delivers in spades. It contains every trick I knew plus many, many 
more. A godsend for library developers, compiler writers, and lovers of elegant hacks, 
it deserves a spot on your shelf right next to Knuth."-Josh Bloch

"When I first saw the title, I figured that the book must be either a cookbook for 
breaking into computers (unlikely) or some sort of compendium of little programming 
tricks. It's the latter, but it's thorough, almost encyclopedic, in its coverage." -Guy 
Steele

These are the timesaving techniques relished by computer hackers-those devoted and 
persistent code developers who seek elegant and efficient ways to build better 
software. The truth is that much of the computer programmer's job involves a healthy 
mix of arithmetic and logic. In Hacker's Delight, veteran programmer Hank Warren 
shares the tricks he has collected from his considerable experience in the worlds of 
application and system programming. Most of these techniques are eminently 
practical, but a few are included just because they are interesting and unexpected. The 
resulting work is an irresistible collection that will help even the most seasoned 
programmers better their craft.

Topics covered include: 

•         A broad collection of useful programming tricks 

•         Small algorithms for common tasks 

•         Power-of-2 boundaries and bounds checking 

•         Rearranging bits and bytes 

•         Integer division and division by constants 

•         Some elementary functions on integers 
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•         Gray code 

•         Hilbert's space-filling curve 

•         And even formulas for prime numbers!

This book is for anyone who wants to create efficient code. Hacker's Delight will help 
you learn to program at a higher level-well beyond what is generally taught in schools 
and training courses-and will advance you substantially further than is possible 
through ordinary self-study alone.
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Foreword

Foreword

When I first got a summer job at MIT's Project MAC almost 30 years ago, I was delighted to be able to work 
with the DEC PDP-10 computer, which was more fun to program in assembly language than any other 
computer, bar none, because of its rich yet tractable set of instructions for performing bit tests, bit masking, 
field manipulation, and operations on integers. Though the PDP-10 has not been manufactured for quite some 
years, there remains a thriving cult of enthusiasts who keep old PDP-10 hardware running and who run old 
PDP-10 software—entire operating systems and their applications—by using personal computers to simulate 
the PDP-10 instruction set. They even write new software; there is now at least one Web site whose pages are 
served up by a simulated PDP-10. (Come on, stop laughing—it's no sillier than keeping antique cars running.)

I also enjoyed, in that summer of 1972, reading a brand-new MIT research memo called HAKMEM, a bizarre 

and eclectic potpourri of technical trivia.
[1]

 The subject matter ranged from electrical circuits to number theory, 
but what intrigued me most was its small catalog of ingenious little programming tricks. Each such gem would 
typically describe some plausible yet unusual operation on integers or bit strings (such as counting the 1-bits in 
a word) that could easily be programmed using either a longish fixed sequence of machine instructions or a 
loop, and then show how the same thing might be done much more cleverly, using just four or three or two 
carefully chosen instructions whose interactions are not at all obvious until explained or fathomed. For me, 
devouring these little programming nuggets was like eating peanuts, or rather bonbons—I just couldn't stop—
and there was a certain richness to them, a certain intellectual depth, elegance, even poetry.

[1] Why "HAKMEM"? Short for "hacks memo"; one 36-bit PDP-10 word could hold six 6-bit characters, so a lot of the 
names PDP-10 hackers worked with were limited to six characters. We were used to glancing at a six-character 
abbreviated name and instantly decoding the contractions. So naming the memo "HAKMEM" made sense at the time
—at least to the hackers.

"Surely," I thought, "there must be more of these," and indeed over the years I collected, and in some cases 
discovered, a few more. "There ought to be a book of them."

I was genuinely thrilled when I saw Hank Warren's manuscript. He has systematically collected these little 
programming tricks, organized them thematically, and explained them clearly. While some of them may be 
described in terms of machine instructions, this is not a book only for assembly language programmers. The 
subject matter is basic structural relationships among integers and bit strings in a computer and efficient 
techniques for performing useful operations on them.

These techniques are just as useful in the C or Java programming languages as they are in assembly language.

Many books on algorithms and data structures teach complicated techniques for sorting and searching, for 
maintaining hash tables and binary trees, for dealing with records and pointers. They overlook what can be 
done with very tiny pieces of data—bits and arrays of bits. It is amazing what can be done with just binary 
addition and subtraction and maybe some bitwise operations; the fact that the carry chain allows a single bit to 
affect all the bits to its left makes addition a peculiarly powerful data manipulation operation in ways that are 
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not widely appreciated.

Yes, there ought to be a book about these techniques. Now it is in your hands, and it's terrific. If you write 
optimizing compilers or high-performance code, you must read this book. You otherwise might not use this bag 
of tricks every single day—but if you find yourself stuck in some situation where you apparently need to loop 
over the bits in a word, or to perform some operation on integers and it just seems harder to code than it ought, 
or you really need the inner loop of some integer or bit-fiddly computation to run twice as fast, then this is the 
place to look. Or maybe you'll just find yourself reading it straight through out of sheer pleasure.

Guy L. Steele, Jr. 
Burlington, Massachusetts 
April 2002
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Preface

Caveat Emptor: The cost of software maintenance increases with the square of the programmer's creativity.

—First Law of Programmer Creativity, Robert D. Bliss, 1992

This is a collection of small programming tricks that I have come across over many years. Most of them will 
work only on computers that represent integers in two's-complement form. Although a 32-bit machine is 
assumed when the register length is relevant, most of the tricks are easily adapted to machines with other 
register sizes.

This book does not deal with large tricks such as sophisticated sorting and compiler optimization techniques. 
Rather, it deals with small tricks that usually involve individual computer words or instructions, such as 
counting the number of 1-bits in a word. Such tricks often use a mixture of arithmetic and logical instructions.

It is assumed throughout that integer overflow interrupts have been masked off, so they cannot occur. C, 
Fortran, and even Java programs run in this environment, but Pascal and ADA users beware!

The presentation is informal. Proofs are given only when the algorithm is not obvious, and sometimes not even 
then. The methods use computer arithmetic, "floor" functions, mixtures of arithmetic and logical operations, 
and so on. Proofs in this domain are often difficult and awkward to express.

To reduce typographical errors and oversights, many of the algorithms have been executed. This is why they 
are given in a real programming language, even though, like every computer language, it has some ugly 
features. C is used for the high-level language because it is widely known, it allows the straightforward mixture 
of integer and bit-string operations, and C compilers that produce high-quality object code are available.

Occasionally, machine language is used. It employs a three-address format, mainly for ease of readability. The 
assembly language used is that of a fictitious machine that is representative of today's RISC computers.

Branch-free code is favored. This is because on many computers, branches slow down instruction fetching and 
inhibit executing instructions in parallel. Another problem with branches is that they may inhibit compiler 
optimizations such as instruction scheduling, commoning, and register allocation. That is, the compiler may be 
more effective at these optimizations with a program that consists of a few large basic blocks rather than many 
small ones.

The code sequences also tend to favor small immediate values, comparisons to zero (rather than to some other 
number), and instruction-level parallelism. Although much of the code would become more concise by using 
table lookups (from memory), this is not often mentioned. This is because loads are becoming more expensive 
relative to arithmetic instructions, and the table lookup methods are often not very interesting (although they 
are often practical). But there are exceptional cases.
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Finally, I should mention that the term "hacker" in the title is meant in the original sense of an aficionado of 
computers—someone who enjoys making computers do new things, or do old things in a new and clever way. 
The hacker is usually quite good at his craft, but may very well not be a professional computer programmer or 
designer. The hacker's work may be useful or may be just a game. As an example of the latter, more than one 

determined hacker has written a program which, when executed, writes out an exact copy of itself. 
[1]

 This is 
the sense in which we use the term "hacker." If you're looking for tips on how to break into someone else's 
computer, you won't find them here.

[1] The shortest such program written in C, known to the present author, is by Vlad Taeerov and Rashit Fakhreyev and 
is 64 characters in length: 

main(a){printf(a,34,a="main(a){printf(a,34,a=%c%s%c,34);}",34);} 
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1-1 Notation

1-1 Notation

This book distinguishes between mathematical expressions of ordinary arithmetic and those that describe the 
operation of a computer. In "computer arithmetic," operands are bit strings, or bit vectors, of some definite 
fixed length. Expressions in computer arithmetic are similar to those of ordinary arithmetic, but the variables 
denote the contents of computer registers. The value of a computer arithmetic expression is simply a string of 
bits with no particular interpretation. An operator, however, interprets its operands in some particular way. For 
example, a comparison operator might interpret its operands as signed binary integers or as unsigned binary 
integers; our computer arithmetic notation uses distinct symbols to make the type of comparison clear.

The main difference between computer arithmetic and ordinary arithmetic is that in computer arithmetic, the 
results of addition, subtraction, and multiplication are reduced modulo 2n, where n is the word size of the 
machine. Another difference is that computer arithmetic includes a large number of operations. In addition to 
the four basic arithmetic operations, computer arithmetic includes logical and, exclusive or, compare, shift left, 
and so on.

Unless specified otherwise, the word size is 32 bits, and signed integers are represented in two's-complement 
form.

Expressions of computer arithmetic are written similarly to those of ordinary arithmetic, except that the 
variables that denote the contents of computer registers are in bold-face type. This convention is commonly 
used in vector algebra. We regard a computer word as a vector of single bits. Constants also appear in bold-face 
type when they denote the contents of a computer register. (This has no analogy with vector algebra because in 
vector algebra the only way to write a constant is to display the vector's components.) When a constant denotes 
part of an instruction, such as the immediate field of a shift instruction, light-face type is used.

If an operator such as "+" has bold-face operands, then that operator denotes the computer's addition operation 
("vector addition"). If the operands are light-faced, then the operator denotes the ordinary scalar arithmetic 
operation. We use a light-faced variable x to denote the arithmetic value of a bold-faced variable x under an 
interpretation (signed or unsigned) that should be clear from the context. Thus, if x = 0x80000000 and y = 
0x80000000, then, under signed integer interpretation, x = y = -231, x + y = -232, and x + y = 0. Here, 
0x80000000 is hexadecimal notation for a bit string consisting of a 1-bit followed by 31 0-bits.

Bits are numbered from the right, with the rightmost (least significant) bit being bit 0. The terms "bits," 
"nibbles," "bytes," "halfwords," "words," and "doublewords" refer to lengths of 1, 4, 8, 16, 32, and 64 bits, 
respectively.

Short and simple sections of code are written in computer algebra, using its assignment operator (left arrow) 
and occasionally an if statement. In this role, computer algebra is serving as little more than a machine-
independent way of writing assembly language code.

Longer or more complex computer programs are written in the C++ programming language. None of the object-

file:///I|/2/006.htm (1 of 5) [21.07.2007 09:41:22]



 

1-1 Notation

oriented features of C++ are used; the programs are basically in C with comments in C++ style. When the 
distinction is unimportant, the language is referred to simply as "C."

A complete description of C would be out of place in this book, but Table 1-1 contains a brief summary of most 
of the elements of C [H&S] that are used herein. This is provided for the benefit of the reader who is familiar 
with some procedural programming language but not with C. Table 1-1 also shows the operators of our 
computer-algebraic arithmetic language. Operators are listed from highest precedence (tightest binding) to 
lowest. In the Precedence column, L means left-associative; that is,

 

and R means right-associative. Our computer-algebraic notation follows C in precedence and associativity.

In addition to the notations described in Table 1-1, those of Boolean algebra and of standard mathematics are 
used, with explanations where necessary.

Table 1-1. Expressions of C and Computer Algebra

Precedence C Computer Algebra Description

 0x… 0x…, 0b… Hexadecimal, binary constants

16 a[k]  Selecting the kth component

16  x0, x1, … Different variables, or bit selection (clarified in text)

16 f(x,…) f(x, …) Function evaluation

16  abs(x) Absolute value (but abs(-231) = -231)

16  nabs(x) Negative of the absolute value

15 x++, x--  Postincrement, decrement

14 ++x, --x  Preincrement, decrement
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1-1 Notation

14 (type name)x  Type conversion

14 R  xk x to the kth power

14 ~x ¬x, x¯ Bitwise not (one's-complement)

14 !x  Logical not (if x = 0 then 1 else 0)

14 -x -x Arithmetic negation

13 L x*y x * y Multiplication, modulo word size

13 L x/y x ÷ y Signed integer division

13 L x/y

 

Unsigned integer division

13 L x%y rem(x, y) Remainder (may be negative), of (x ÷ y) signed 
arguments

13 L x%y rem(x, y) Remainder of unsigned arguments

  mod(x, y) x reduced modulo y to the interval [0, abs(y) - 1]; 
signed arguments

12 L x + y, x - y x + y, x - y Addition, subtraction

11 L x << y, x >> y Shift left, right with 0-fill ("logical" shifts)

11 L x >> y Shift right with sign-fill ("arithmetic" or "algebraic" 
shift)

11 L  Rotate shift left, right
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10 L x < y, x <= y,

x > y, x >= y

x < y, x y,

x > y, x y,

Signed comparison

10 L x < y, x <= y,

x > y, x >= y

Unsigned comparison

9 L x == y, x != y x = y, x y Equality, inequality

8 L x & y x & y Bitwise and

7 L x ^ y x y Bitwise exclusive or

7 L  x y Bitwise equivalence (¬(x y))

6 L x | y x | y Bitwise or

5 L x && y Conditional and (if x = 0 then 0 else if y = 0 then 0 
else 1)

4 L x || y Conditional or (if x 0 then 1 else if y 0 then 1 
else 0)

3 L  x || y Concatenation

2 R x = y x y Assignment

Our computer algebra uses other functions, in addition to "abs," "rem," and so on. These are defined where 
introduced.

In C, the expression x < y < z means to evaluate x < y to a 0/1-valued result, and then compare that result to 
z. In computer algebra, the expression x < y < z means (x < y) & (y < z).

C has three loop control statements: while, do, and for. The while statement is written:
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while (expression) statement

First, expression is evaluated. If true (nonzero), statement is executed and control returns to evaluate 
expression again. If expression is false (0), the while-loop terminates.

The do statement is similar, except the test is at the bottom of the loop. It is written:

do statement while (expression)

First, statement is executed, and then expression is evaluated. If true, the process is repeated, and if false, the 
loop terminates.

The for statement is written:

for (e1; e2; e3) statement

First, e1, usually an assignment statement, is executed. Then e2, usually a comparison, is evaluated. If false, the 

for-loop terminates. If true, statement is executed. Finally, e3, usually an assignment statement, is executed, 

and control returns to evaluate e2 again. Thus, the familiar "do i = 1 to n" is written:

for (i = 1; i <= n; i++) 

(This is one of the few contexts in which we use the postincrement operator.)
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1-2 Instruction Set and Execution Time Model

To permit a rough comparison of algorithms, we imagine them being coded for a machine with an instruction 
set similar to that of today's general purpose RISC computers, such as the Compaq Alpha, the SGI MIPS, and 
the IBM RS/6000. The machine is three-address and has a fairly large number of general purpose registers—
that is, 16 or more. Unless otherwise specified, the registers are 32 bits long. General register 0 contains a 
permanent 0, and the others can be used uniformly for any purpose.

In the interest of simplicity there are no "special purpose" registers, such as a condition register or a register to 
hold status bits, such as "overflow." No floating-point operations are described, because that is beyond the 
scope of this book.

We recognize two varieties of RISC: a "basic RISC," having the instructions shown in Table 1-2, and a "full 
RISC," having all the instructions of the basic RISC plus those shown in Table 1-3.

Table 1-2. Basic RISC Instruction Set

Opcode Mnemonic Operands Description

add, sub, mul, div, divu, 
rem, remu

RT,RA,RB RT RA op RB, where op is add, 
subtract, multiply, divide signed, divide 
unsigned, remainder signed, or remainder 
unsigned.

addi, muli RT,RA,I RT RA op I, where op is add or 
multiply, and I is a 16-bit signed immediate 
value.

addis RT,RA,I RT RA + (I || 0x0000).

and, or, xor RT,RA,RB RT RA op RB, where op is bitwise and, 
or, or exclusive or.

andi, ori, xori RT,RA,Iu As above, except the last operand is a 16-bit 
unsigned immediate value.
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beq, bne, blt, ble, bgt, bge RT,target Branch to target if RT = 0, or if RT 0, or if 

RT < 0, or if RT 0, or if RT > 0, or if RT 

0 (signed integer interpretation of RT).

bt, bf RT,target Branch true/false; same as bne/beq resp.

cmpeq, cmpne, cmplt, cmple, 
cmpgt, cmpge, cmpltu, cmpleu, 
cmpgtu, cmpgeu

RT,RA,RB RT gets the result of comparing RA with RB; 0 
if false and 1 if true. Mnemonics denote 
compare for equality, inequality, less than, and 
so on, as for the branch instructions, and in 
addition, the suffix "u" denotes an unsigned 
comparison.

cmpieq, cmpine, cmpilt, 
cmpile, cmpigt, cmpige

RT,RA,I Like cmpeq, and so on, except the second 
comparand is a 16-bit signed immediate value.

cmpiequ, cmpineu, cmpiltu, 
cmpileu, cmpigtu, cmpigeu

RT,RA,Iu Like cmpltu, and so on, except the second 
comparand is a 16-bit unsigned immediate 
value.

ldbu, ldh, ldhu, ldw RT,d(RA) Load an unsigned byte, signed halfword, 
unsigned halfword, or word into RT from 
memory at location RA + d, where d is a 16-
bit signed immediate value.

mulhs, mulhu RT,RA,RB RT gets the high-order 32 bits of the product of 
RA and RB; signed and unsigned.

not RT,RA RT bitwise one's-complement of RA.

shl, shr, shrs RT,RA,RB RT RA shifted left or right by the amount 
given in the rightmost six bits of RB; 0-fill 
except for shrs, which is sign-fill. (The shift 
amount is treated modulo 64.)

shli, shri, shrsi RT,RA,Iu RT RA shifted left or right by the amount 
given in the 5-bit immediate field.
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1-2 Instruction Set and Execution Time Model

stb, sth, stw RS,d(RA) Store a byte, halfword, or word, from RS into 
memory at location RA + d, where d is a 16-
bit signed immediate value.

In these brief instruction descriptions, RA and RB appearing as source operands really means the contents of 
those registers.

A real machine would have branch and link (for subroutine calls), branch to the address contained in a register 
(for subroutine returns and "switches"), and possibly some instructions for dealing with special purpose 
registers. It would, of course, have a number of privileged instructions and instructions for calling on supervisor 
services. It might also have floating-point instructions.

Some other computational instructions that a RISC computer might have are identified in Table 1-3. These are 
discussed in later chapters.

Table 1-3. Additional Instructions for the "Full RISC"

Opcode Mnemonic Operands Description

abs, nabs RT,RA RT gets the absolute value, or the negative of 
the absolute value, of RA.

andc, eqv, nand, nor, orc RT,RA,RB Bitwise and with complement (of RB), 
equivalence, negative and, negative or, and or 
with complement.

extr RT,RA,I,L Extract bits I through I+L-1 of RA, and 
place them right-adjusted in RT, with 0-fill.

extrs RT,RA,I,L Like extr, but sign-fill.

ins RT,RA,I,L Insert bits 0 through L-1 of RA into bits I 
through I+L-1 of RT.

nlz RT,RA RT gets the number of leading 0's in RA (0 to 
32).
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pop RT,RA RT gets the number of 1-bits in RA (0 to 32).

ldb RT,d(RA) Load a signed byte into RT from memory at 
location RA + d, where d is a 16-bit signed 
immediate value.

moveq, movne, movlt, movle, 
movgt, movge

RT,RA,RB RT RB if RA = 0, or if RA 0, and so on, 
else RT is unchanged.

shlr, shrr RT,RA,RB RT RA rotate-shifted left or right by the 
amount given in the rightmost five bits of RB.

shlri, shrri RT,RA,Iu RT RA rotate-shifted left or right by the 
amount given in the 5-bit immediate field.

trpeq, trpne, trplt, trple, 
trpgt, trpge, trpltu, trpleu, 
trpgtu, trpgeu

RA,RB Trap (interrupt) if RA = RB, or RA RB, 
and so on.

trpieq, trpine, trpilt, 
trpile, trpigt, trpige

RA,I Like trpeq, and so on, except the second 
comparand is a 16-bit signed immediate value.

trpigtu, trpigeu trpiequ, 
trpineu, trpiltu, trpileu,

RA,Iu Like trpltu, and so on, except the second 
comparand is a 16-bit unsigned immediate 
value.

It is convenient to provide the machine's assembler with a few "extended mnemonics." These are like macros 
whose expansion is usually a single instruction. Some possibilities are shown in Table 1-4.

Table 1-4. Extended Mnemonics

Extended Mnemonic Expansion Description

b target beq R0,target Unconditional branch.

li RT,I See text Load immediate, -231 I < 232.
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mov RT,RA ori RT,RA,0 Move register RA to RT.

neg RT,RA sub RT,R0,RA Negate (two's-complement).

subi RT,RA,I addi RT,RA,-I Subtract immediate (I -215).

The load immediate instruction expands into one or two instructions, as required by the immediate value I. For 
example, if 0 I < 216, an or immediate (ori) from R0 can be used. If -215 I < 0, an add immediate 
(addi) from R0 can be used. If the rightmost 16 bits of I are 0, add immediate shifted (addis) can be used. 
Otherwise, two instructions are required, such as addis followed by ori. (Alternatively, in the last case a 
load from memory could be used, but for execution time and space estimates we assume that two elementary 
arithmetic instructions are used.)

Of course, which instructions belong in the basic RISC, and which belong in the full RISC is very much a 
matter of judgment. Quite possibly, divide unsigned and the remainder instructions should be moved to the full 
RISC category. Shift right signed is another suspicious instruction, given its low frequency of use in the SPEC 
benchmarks. The trouble is, in C it is easy to accidentally use these instructions, by doing a division with 
unsigned operands when they could just as well be signed, and by doing a shift right with a signed quantity 
(int) that could just as well be unsigned. Incidentally, shift right signed (or shift right arithmetic, as it is often 
called) does not do a division of a signed integer by a power of 2; you need to add 1 to the result if the dividend 
is negative and any nonzero bits are shifted out.

The distinction between basic and full RISC involves many other such questionable judgments, but we won't 
dwell on them.

The instructions are limited to two source registers and one target, which simplifies the computer (e.g., the 
register file requires no more than two read ports and one write port). It also simplifies an optimizing compiler, 
because the compiler does not need to deal with instructions that have multiple targets. The price paid for this is 
that a program that wants both the quotient and remainder of two numbers (not uncommon) must execute two 
instructions (divide and remainder). The usual machine division algorithm produces the remainder as a by-
product, so many machines make them both available as a result of one execution of divide. Similar remarks 
apply to obtaining the doubleword product of two words.

The conditional move instructions (e.g., moveq) ostensibly have only two source operands, but in a sense they 
have three. Because the result of the instruction depends on the values in RT, RA, and RB, a machine that 
executes instructions out of order must treat RT in these instructions as both a use and a set. That is, an 
instruction that sets RT, followed by a conditional move that sets RT, must be executed in that order, and the 
result of the first instruction cannot be discarded. Thus, the designer of such a machine may elect to omit the 
conditional move instructions to avoid having to consider an instruction with (logically) three source operands. 
On the other hand, the conditional move instructions do save branches.
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Instruction formats are not relevant to the purposes of this book, but the full RISC instruction set described 
above, with floating point and a few supervisory instructions added, can be implemented with 32-bit 
instructions on a machine with 32 general purpose registers (5-bit register fields). By reducing the immediate 
fields of compare, load, store, and trap instructions to 14 bits, the same holds for a machine with 64 general 
purpose registers (6-bit register fields).

Execution Time

We assume that all instructions execute in one cycle, except for the multiply, divide, and remainder 
instructions, for which we do not assume any particular execution time. Branches take one cycle whether they 
branch or fall through.

The load immediate instruction is counted as one or two cycles, depending on whether one or two elementary 
arithmetic instructions are required to generate the constant in a register.

Although load and store instructions are not often used in this book, we assume they take one cycle and ignore 
any load delay (time lapse between when a load instruction completes in the arithmetic unit, and when the 
requested data is available for a subsequent instruction).

However, knowing the number of cycles used by all the arithmetic and logical instructions is often insufficient 
for estimating the execution time of a program. Execution can be slowed substantially by load delays and by 
delays in fetching instructions. These delays, although very important and increasing in importance, are not 
discussed in this book. Another factor, one which improves execution time, is what is called "instruction-level 
parallelism," which is found in many contemporary RISC chips, particularly those for "high-end" machines.

These machines have multiple execution units and sufficient instruction-dispatching capability to execute 
instructions in parallel when they are independent (that is, when neither uses a result of the other, and they don't 
both set the same register or status bit). Because this capability is now quite common, the presence of 
independent operations is often pointed out in this book. Thus, we might say that such and such a formula can 
be coded in such a way that it requires eight instructions and executes in five cycles on a machine with 
unlimited instruction-level parallelism. This means that if the instructions are arranged in the proper order 
("scheduled"), a machine with a sufficient number of adders, shifters, logical units, and registers can in 
principle execute the code in five cycles.

We do not make too much of this, because machines differ greatly in their instruction-level parallelism 
capabilities. For example, an IBM RS/6000 processor from ca. 1992 has a three-input adder, and can execute 
two consecutive add-type instructions in parallel even when one feeds the other (e.g., an add feeding a 
compare, or the base register of a load). As a contrary example, consider a simple computer, possibly for low-
cost embedded applications, that has only one read port on its register file. Normally, this machine would take 
an extra cycle to do a second read of the register file for an instruction that has two register input operands. 
However, suppose it has a bypass so that if an instruction feeds an operand of the immediately following 
instruction, then that operand is available without reading the register file. On such a machine, it is actually 
advantageous if each instruction feeds the next—that is, if the code has no parallelism.
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